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A -Transform-Based Absorbing Boundary Conditions
for 3-D TLM-SCN Method

Zhenhai Shao, Wei Hong, and Hongwei Wu

Abstract—In this paper, an efficient absorbing boundary condition
(ABC) constructed in the -transform domain [i.e., -transform-based
absorbing boundary conditions (Z-ABCs)] for the three-dimensional sym-
metrical condensed-node transmission-line matrix method is presented.
Numerical results indicate that the Z-ABCs show better performance
than the conventional Higdon’s ABC in suppressing instability caused by
spurious modes.

Index Terms—3-D SCN-TLM, Z-ABCs.

I. INTRODUCTION

The three-dimensional symmetrical condensed-node transmis-
sion-line matrix (3-D SCN-TLM) method [1] has been extensively
applied to the analysis of electromagnetic problems with complex
geometry such as microwave circuits, etc. For open-region problems,
absorbing boundary conditions (ABCs) are very important in obtaining
a virtual extension of the limited computational domain [1]. Generally,
there are two ways to construct ABCs. One is the employment of
nonphysical absorbing media, such as the perfect matched layer
(PML) [2], which can absorb the wide-angle scattered wave perfectly,
but is complicated in formulation and normally needs extra computer
memories. Another is the usage of outgoing wave equations [3]–[8],
which only use the fields at the neighboring space and time nodes and
does not require extra computer memories.

In this paper, a new kind of ABC derived from theZ-transform
domain [7] is presented and applied to the 3-D TLM-SCN, which
shows better performance and stability in damping spurious reflection
compared with the conventional standard Higdon’s ABC (S-Higdon’s
ABC) [3], [4], [8] or the modified Higdon’s ABC (M-Higdon’s ABC).

II. FORMULATION OF THE ABCS

A. Basic Theory

A scattered wave propagating along the�x-direction with the phase
velocity v is assumed and the truncated boundary is set atx = 0. In
theZ-transform domain, the relation between the fieldE0(z) at the
boundary nodex0 = 0 and the fieldsEk(z), k = 1; 2; . . . ; p at the
interior nodesxk = k4x can be expressed as [7]

E0(z) =

p

k=1

hk(z)Ek(z) (1)

wherep is the order of the ABC andhk(z), k = 1; 2; . . . ; p are the
transfer functions that satisfy

hk = (�1)k+1 (dk dk ; . . . ; dk ); k =1; 2; . . . ; p

(2)

with d = z�s, s = 4x=(v4t),4x, and4t being the space and time
increments, respectively.
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In practice, the phase velocityv is determined by the incident angle
� (the angle between the incident direction and thex-axis) of the scat-
tered wave or the effective dielectric constant"e� of the transmission
lines, i.e.,v = v0= cos � or v = v0=

p
"e� , wherev0 denotes the light

velocity of free space.
Normally, the factors in the transfer functions is not an integer,

which means that time delay of a space increment is not integer times
of the time increment. Consequently, (1) and (2) cannot be changed
into difference schemes directly. In practical applications, proper sim-
plification is necessary. In [7], two kinds of ABCs are obtained by ex-
pandingz�s to a rational polynomial ofz�1 for the finite-difference
time-domain (FDTD) method. In [3], [4], and [8], it is pointed out that
the transmission-line matrix (TLM) method cannot obtain stable re-
sults with an S-Higdon’s ABC because of spurious modes. In the TLM
method, the scattered impulse on the link line of a node resulted from
an incident impulse with the same polarization on the link line at the
other side of the node only appears after two time steps24t. Thus,
we propose to expandz�s to a rational polynomial ofz�2. This ABC
does not produce spurious modes and shows better performance than
the Higdon’s ABC. The details are shown as follows:

z�s =
z����s

z��+(1��)s
=

(z�2)(�+�s)=2

(z�2)[��(1��)s]=2

�
1 + (�+ �s)

(z�2 � 1)

2

1 + �� (1� �)s
(z�2 � 1)

2

=
2� (�+ �s) + (�+ �s)z�2

2� �� (1� �)s + �� (1� �)s z�2
: (3)

Applying (3) and (2) to (1) and using the inversion of theZ-transform,
theZ-transform-based absorbing boundary conditions (Z-ABCs) for
the TLM method can be obtained in time domain.

In order to use thepth order Z-ABCs constructed from (3), its coef-
ficients must be given, which can be expressed as

p

i=0

Cp
0;iE

n�2i
0 =

p

i=1

p

j=0

Cp
i;jE

n�2j
i : (4)

Recursive formulas for the coefficients in (4) can be derived as

C1
0;0 =b1 (5)

C1
0;1 =a1 (6)

C1
1;0 =d1 (7)

C1
1;1 =c1 (8)

Cp
0;0 =Cp�1

0;0 bp (9)

Cp
0;i =Cp�1

0;i�1 + Cp�1
0;i bp; i = 1; 2; . . . ; p� 1 (10)

Cp
0;p =Cp�1

0;p�1ap (11)

Cp
1;0 =Cp�1

0;0 dp + Cp�1
1;0 bp (12)

Cp
1;j =Cp�1

0;j�1cp + Cp�1
0;j dp + Cp�1

1;j�1ap + Cp�1
1;j bp;

1 � j < p (13)

Cp
1;p =Cp�1

0;p�1cp + Cp�1
1;p�1ap (14)

Cp
k;0 =Cp�1

k;0 bp � Cp�1
k�1;0dp; k = 2; 3; . . . ; p� 1 (15)

Cp
k;j =Cp�1

k;j�1ap + Cp�1
k;j bp � Cp�1

k�1;j�1cp � Cp�1
k�1;jdp;

2 � k < p; 1 < j < p (16)

Cp
k;p =Cp�1

k;p�1ap � Cp�1
k�1;p�1cp; 2 � k < p (17)

Cp
p;0 =� Cp�1

p�1;0dp (18)
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Cp
p;i =� Cp�1

p�1;i�1cp � Cp�1
p�1;idp; 1 � i < p (19)

Cp
p;p =� Cp�1

p�1;p�1cp (20)

where

ai =�� (1� �)si; i = 1; 2; . . . ; p (21)

bi =2� �� (1� �)si ; i = 1; 2 . . . ; p (22)

ci =�+ �si; i = 1; 2; . . . ; p (23)

di =2� (�+ �si); i = 1; 2; . . . ; p: (24)

B. Stability Analysis

The stability condition for the Z-ABCs can be obtained by the Von
Neumann (Fourier series) method. The Z-ABCs of the first order can
be written as

2 + s� (�+ �s) En
0 + (�+ �s)� s En�2

0

= 2� (�+ �s) En
1 + (�+ �s)En�2

1 : (25)

Using the Von Neumann method, the unconditional stability condi-
tion for (25) can be derived as

�+ �s < 1 +
s

2
: (26)

The conditional stability condition for (25) can be obtained as

�+ �s = 1 +
s

2
: (27)

For� = � = 0:5, the Z-ABCs are unconditional stable. This condition
is also suitable for the Z-ABCs of the second or higher order.

III. N UMERICAL RESULTS

In order to assess the effectiveness of the Z-ABCs, some problems
of rectangular-waveguide, microstrip transmission-line, low-pass, and
bandpass filters are analyzed by using the 3-D TLM-SCN method with
the proposed Z-ABCs. In the following examples, we always choose
the following scheme in truncated boundaries: the tangential electric
fields and normal magnetic fields in truncated boundary are all ab-
sorbed by the Z-ABCs. When using this scheme, the corner and edge
of the truncated boundary will need not be considered.

First, let us consider a WR28 rectangular waveguide in which the
waves can be considered as a superposition of many plane waves
bouncing back and forth on the wall at different incident angles.
Therefore, behavior of the wide-angle absorption of the ABCs can
be evaluated. Simulations were performed using the 3-D TLM-SCN
method. Both ends of the waveguide were terminated with the Z-ABCs
and the conventional Higdon’s ABCs. The voltage standing-wave
ratio (VSWR) in the waveguide is computed directly and numerically
with the ratio of Vmax over Vmin, where V is the amplitude of
the dominant mode in the waveguide. Fig. 1 shows the return loss
computed by the 3-D TLM-SCN method with Z-ABCs and Higdon’s
ABCs, respectively. It can be observed that the Z-ABCs shows better
performance than the S-Higdon’s ABC and M-Higdon’s ABC in most
frequency ranges.

Secondly, consider a microstrip, the thickness and dielectric constant
of its substrate are 0.1 mm and 13, respectively. The width of the metal
strip is 0.15 mm (due to the symmetry of the problem, only one-half
of the structure is considered). The microstrip is excited by a Gaussian
pulse at the center point of the cross section under the strip and only
Ey component is assumed as

Ei
y = exp � (t� t0)

2

T 2
(28)

Fig. 1. Comparison of the return losses in a rectangular waveguide.

Fig. 2. Comparison of the electric field at the center point under the strip by
the TLM method with the Z-ABC and Jigdon’s ABC, where� = � = 0:5.

Fig. 3. Comparison of the effective dielectric constant of a microstrip with
Z-ABCs and the Higdon’s ABCs and empirical formula.

wheret0 = 1644t andT = 424t. There are 119 mesh nodes along
thez-direction, 35 nodes away from the metal strip in thex-direction
and 11 nodes in the air layer along they-direction. Along thez-direc-
tion, the Z-ABCs of the second order are used, in whichv1 = v0=

p
9

andv1 = v0=
p
11. Along thex- andy-directions, the Z-ABCs of the

first order are used, in whichv = v0=(
p
9:12 cos �), where� = 30�

or 0� corresponding to thex- or y-directions, respectively. The same
parameters for the S-Higdon’s condition are chosen.

When� = � = 0:5, Fig. 2 shows the comparison of electric field at
the center point under the strip. For S-Higdon’s ABCs,Ey is divergent
after 1200 time steps. However,Ey is still convergent after 7000 time
steps with the Z-ABCs.

When� = � = 0:25, Figs. 3 and 4 show the comparison of the
effective dielectric constant and electric fieldEy at the center point
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Fig. 4. Comparison of the electric field at the center point under the strip with
the Higdon’s ABC and Z-ABCs.

Fig. 5. Comparison of the electric field at the center of the reference section
under the strip with the Z-ABCs of the first, second, and third orders in the
z-direction, respectively.

Fig. 6. Configuration of a microstrip low-pass filter.

under the strip with the Z-ABCs and S-Higdon’s ABCs, respectively.
It can be seen that the results with the Z-ABCs are in better agree-
ment with empirical results than those with S-Higdon’s ABCs. It can
be seen that the vertical electric field reflected from boundaries with
the Z-ABCs is reduced more than 200%–300% compared to the re-
sults with S-Higdon’s ABCs. Fig. 5 shows the comparison of the elec-
tric field Ey at the center of the reference plane under the strip with
the Z-ABCs of the first, second, and third orders in thez-direction, re-
spectively. It is obvious that the effectiveness with the Z-ABCs of the
second order is better than with the Z-ABCs of the first order. Due to
numerical dispersion, the effectiveness with Z-ABCs of the third order
is worse than Z-ABCs of the second order.

Next, consider a microstrip low-pass filter printed on a Duriod
("r = 2:2) dielectric substrate, as shown in Fig. 6. The mesh
spaces used here are4x = 0:4064 mm,4y = 0:265 mm, and

(a)

(b)

Fig. 7. Scattering parameters of the low-pass filter. (a) Return loss.
(b) Insertion loss.

Fig. 8. Configuration of a microstrip bandpass filter.

Fig. 9. Scattering parameters of the bandpass filter.

4z = 0:4233 mm. Along thez-direction, the Z-ABCs of the second
order are used, in whichv1 = v0=

p
1:7 andv2 = v0=

p
2:2. Along the
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x- andy-directions, the Z-ABCs of the first order are used, in which
v = v0=(

p
1:89 cos �) and� is 30� or 0� corresponding to thex- and

y-directions, respectively. The scattering parameters computed with
both the TLM and FDTD methods are shown in Fig. 7.

Finally, consider a microstrip bandpass filter (Fig. 8). The computed
scattering parameters are shown in Fig. 9 by using the TLM-SCN
method with Z-ABCs. Along thez-direction, Z-ABCs of the second
order are used, in whichv1 = v0=

p
6:6 andv2 = v0=

p
9:5. Along

thex- andy-directions, Z-ABCs of the first order are used, in which
v = v0=(

p
6:85 cos �) and � is 30� or 0� corresponding to thex-

and y-directions, respectively. The results are in good agreement
with the results of the FDTD method, where the uniform mesh
4x = 4y = 4z = 0:318 mm is used.

IV. CONCLUSION

In this paper, an efficient Z-ABC constructed in theZ-transform do-
main has been proposed for the 3-D TLM-SCN. Numerical results for
the transmission problems of the waveguide and microstrip, as well as
the discontinuity problems of microstrip low-pass and bandpass filters,
verified the validity of Z-ABCs.
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